CHRISTIAN SOCIAL SERVICES COMMISSION (CSSC) NORTHERN ZONE JOINT EXAMINATIONS SYNDICATE (NZ-JES)

FORM FOUR PRE – NATIONAL EXAMINATION AUGUST 2025 CHEMISTRY 2A (PRACTICAL)

032/2A

MARKING SCHEME

- (a) i. Methyl orange indicator it is the titration between strong acid against weak base.
 _____(0.5 marks)
 - ii. Balanced chemical equation;

$${\rm H_2SO_4}_{\,(aq)} + {\rm Na_2CO_3}_{\,(aq)} \longrightarrow {\rm Na_2SO_4}_{\,(aq)} + {\rm CO_2}_{\,(g)} + {\rm H_2O}_{(l)} \quad \underline{\hspace{1cm}} (1 \; {\rm marks})$$

- iii. To ensure thorough mixing up of chemicals during titration. ____(0.5 marks)
- (a) The volume of pipette used was 25 cm³ (1 marks)

 Burette readings (table of result 4.5mark, consistence and two decimal places.

 1^{1/2} marks) = Total 6marks

Titration number	Pilot	1	2	3
Final readings (cm ³)	12.60	25.10	37.50	12.60
Initial readings(cm ³)	0.00	12.60	25.10	0.00
Titre volume (cm ³)	12.60	12.50	12.40	12.60

Average volume =
$$\frac{V_1 + V_2 + V_3}{3}$$
 = 12.50 cm³

 \therefore Average volume of acid used = 12.50 cm³ _____(Total 1 mark)

Alternatively;

The volume of pipette used was 20 cm³

Burette readings

Titration number	Pilot	1	2	3
Final readings (cm ³)	10.10	20.10	30.00	40.10
Initial readings(cm ³)	0.00	10.10	10.10	30.00
Titre volume (cm ³)	10.10	10.00	9.90	10.10

Average volume =
$$\frac{V_1 + V_2 + V_3}{3}$$
 = 10.00 cm³

 \therefore Average volume of acid used = 10.00 cm³

(b)

- (i) 12.5 cm³ of acid required 25 cm³ of base for complete reaction. (*Total*1 marks)
- (ii) Percentage purity of **TT**From

Molarity of base =
$$\frac{\text{Concentration}}{\text{Molar mass}}$$

= $\frac{5.3 \text{ g dm}^{-3}}{106 \text{ g mol}^{-1}}$
= 0.05 mol dm^{-3}

: Molarity of base is 0. 05 M _____(Total 2 mark)

Given;

$$\begin{split} &\text{Molarity of acid, M}_a = ? \\ &\text{Molarity of base, M}_b = 0.05 \text{ M} \\ &\text{Volume of acid, V}_a = 12.5 \text{ cm}^3 \\ &\text{Volume of base, V}_b = 25 \text{ cm}^3 \\ &\text{Number of moles of aci, n}_a = 1 \\ &\text{Number of moles of base, n}_b = 1 \end{split}$$

From;

$$M_{a} = \frac{M_{b} \times V_{b} \times n_{a}}{V_{a} \times n_{b}}$$

$$= \frac{0.05M \times 25 \text{ cm}^{3} \times 1}{12.5 \text{ cm}^{3} \times 1}$$

$$= 0.1 \text{ mol dm}^{-3}$$

: Molarity of pure sulphuric acid is 0.1M _____(Total 3 mark)

But;

Concentration_{pure} = Molarity_{pure}
$$\times$$
 Molar mass
= 0.1 mol dm⁻³ \times 98 g mol⁻¹
= 9.8g dm⁻³

: Concentration of pure sulphuric acid is 9.8 g dm⁻³ _____(Total 2 mark)

From:

3.5 g of impure dissolved in 250 cm³ of distilled water ? dissolved in 1000 cm³ of distilled water

So;

Conc =
$$\frac{3.5 \text{ g} \times 1000 \text{ cm}^3}{250 \text{ cm}^3}$$

= 14 g

∴ Concentration of impure sulphuric acid is 14 g dm⁻³ _____(Total 2 mark)

But;

% purity =
$$\frac{\text{Concentration}_{\text{pure}}}{\text{Concentration}_{\text{impure mixture}}} \times 100\%$$
$$= \frac{9.8 \text{g dm}^{-3}}{14 \text{ g dm}^{-3}} \times 100\%$$
$$= 70\%$$

- ∴ Percentage purity of sulphuric acid is 70% _____(Total 3 mark)
- (c) Two (2) properties of each;
 - (i) Sulphuric acid TT
 - It is a dehydrating agent.

$$C_{12}H_{22}O_{11\,(s)} \xrightarrow{H_2SO_4} 12C_{(s)} + 11H_2O_{(l)}$$

• It is an oxidizing agent.

$$Cu_{(s)} + 2H_2SO_{4\,(l)} \longrightarrow CuSO_{4\,(aq)} + 2H_2O_{(l)} + SO_{2\,(g)}$$

- (ii) Sodium carbonate LL
 - It is soluble in water.
 - It does not decompose on heating (it is stable). (Total 2 marks)

2. Sample **W**

S/N	Experiments	Observation	Inference	
1	Appearence	Colour – Greeen powder was	Cu ²⁺ may be present.	
		observed		
		Texture – powder form was	HCO_3^- , CO_3^{2-} may be	
		observed	present.	
2 Flame test		Bluish green coloured flame was	Cu ²⁺ may be present.	
		observed		
3 Action of heat		Black residue was observed	Cu ²⁺ may be present	
		Colourless gas evolved which	HCO ₃ -,CO ₃ ² - may be	
		turns lime water milky	present	
4	Action of dil.HCl on	Effervescence of colourless gas	HCO_3^-, CO_3^{2-} may be	
	solid sample	was evolved	present.	
5	Action of conc. H ₂ SO ₄	Effervescence of colourless gas	HCO_3^- , CO_3^{2-} may be	
	on a solid sample	was evolved	present.	
6 Solul	Solubility	Green coloured solution was	Cu ²⁺ may be present.	
		observed but insoluble in water	CO_3^{2-} of Cu may be	
			present.	
7 Action of NaOH on a		Blue precipitate was formed,	Cu ²⁺ may be present.	
	sample solution	insoluble in excess.		
8	Actionof ammonia	Pale blue precipitate was formed,	Cu ²⁺ may be present.	
	solution on a sample	soluble in excess forming a deep		
	solution	blue solution		
9	Confirmatory test for	Pale blue precipitate was formed,	Cu ²⁺ was confirmed.	
	copper on	soluble in excess of aqueous		
	(i) addition of	ammonia forming a deep blue		
	ammonia solution	solution		
	(ii) addition of			
	potasium			
	hexacyanoferrateII	Reddish brown precipitate was		
		formed		
10	Confirmatory test for	White precipitate insoluble in	CO ₃ ²⁻ confirmed.	
	carbonate	dilute HCl		

(@2 marks = 20 marks)

Conclusion:

i. The cation in sample W was Cu^{2+} and anion was CO_3^{2-} (2 marks)

The compound W was copper (ii) carbonate / $CUCO_3$ (1marks)

ii. Balanced chemical equation $CUCO_3(s) \longrightarrow CuO_{(s)} + CO_{2(g)}$ (2marks)